Philips launches ClarifEye Augmented Reality Surgical Navigation at Armed Forces Hospital in Oman, successfully expanding access to complex spine procedures

  • Industry-first augmented reality (AR) surgical navigation solution was used to successfully treat first patients after debuting at Armed Forces Hospital, Oman

  • Philips’ fully integrated Image Guided Therapy System – Azurion – provides hospitals with unique 3D AR visualization technology and live optical feedback for more accurate spine procedures

  • ClarifEye Augmented Reality Surgical Navigation provided improved outcomes for adult patient in Oman

 Dr. Ahmed Al Jahwari, Head of Department Orthopedics and Spine Surgery at Hospital MoD, Oman using ClarifEye to perform spine surgery

Muscat, Oman – Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announces that the first patients were successfully treated using its innovative 3D Augmented Reality (AR) spine navigation solution at the Armed Forces Hospital, Oman. For this case the surgeons used Philips integrated Spine suite solution that offers the company’s Azurion Hybrid OR with ClarifEye, an industry-first solution that combines 2D and 3D visualisations at low X-ray dose with 3D AR navigation into one system. This system enables surgeons to define and navigate along the critical pathway using advanced real-time image guidance for precise device placement both in open and minimally invasive spine procedures*.

As the first country outside of Europe to utilize the ClarifEye technology from Philips, one of the first procedures in Oman was successfully performed to treat a 51-year-old male patient with multi-level degenerative lumbar stenosis and was successfully treated using minimally invasive techniques. “Philips’ new technology enables us to perform less invasive procedures and produce better outcomes for patients with spine conditions,” said Dr. Ahmed Al Jahwari, Head of Department Orthopedics and Spine Surgery at Hospital MoD, Oman. “Thanks to the high quality of the intraoperative cone beam CT imaging and the positioning flexibility of the ClarifEye system, we can ensure that implants are in place which lowers post-operative CT scans to check implant placements.”

“We are proud to collaborate with Armed Forces Hospital in bringing the breakthrough ClarifEye Augmented Reality Surgical Navigation technology that we believe will transform the way spinal fusion procedures are performed in the region.  This is the first such installation in whole of META region that will help improve patient care ”, said Manoj Arora, Business Leader, Image Guided Therapy, Philips META.   

Increased clinical accuracy and improved outcomes

Treatment for spine conditions can often be complex and delicate. Surgeons need to take particular care to avoid fragile neurological and vascular structures close to the spine. Spinal surgery has traditionally been an ‘open surgery’ procedure, where surgeons would manually touch the patient’s spine to position implants such as pedicle screws. As technology has advanced, there has been a shift to using minimally invasive techniques, such as small incisions in the patient’s skin to minimize blood loss and soft tissue damage and consequently reduce postoperative pain. In both approaches, surgeons can now use the real-time imaging and 3D navigation of ClarifEye rather than only relying on having a line of sight to the patient’s spine. In addition, intra-operative image guidance increases clinical accuracy and improves outcomes, with patients subject to fewer revision surgeries compared to the previous standard of care [1,2]. Data published in Science Reports demonstrated that the ClarifEye technology performed better in accuracy than open surgery pedicle screw placement without 3D navigation (94% vs 89,6%) [3]. Data from a clinical study using ClarifEye, showed a 98% accuracy of pedicle screw placement during minimally invasive procedures [4].

Growing international adoption

ClarifEye Augmented Reality Surgical Navigation was introduced to the market earlier this year. The site in Oman complements the growing international ecosystem of innovation partners that have adopted this new solution such as the University Medical Center Schleswig-Holstein in Kiel, Germany, Karolinska University Hospital, Stockholm, Sweden, the Regional Hospital of Lugano, Switzerland and the Strasbourg University Hospital in France.

“We’re excited that international access to ClarifEye is expanding, and more hospitals and patients will get to experience its benefits firsthand,” said Karim Boussebaa, Business Leader Image Guided Therapy Systems at Philips. “As the latest addition to Spine suite, ClarifEye adds a new dimension in surgical precision for patients. Through innovation we want to innovate procedures and help clinicians to deliver on the Quadruple Aim of better health outcomes, improve patient experience and staff satisfaction, and lower cost of care – and ClarifEye is a great example.”

Philips is a pioneer in hybrid operation room (OR) solutions and innovating surgical navigation technology, which helps surgeons perform image-guided, open and minimally invasive spine surgery. When performing delicate tasks in spine procedures, accuracy is paramount to achieving the best outcome for patients. The integration between ClarifEye and Philips Image Guided Therapy System – Azurion – offers key benefits such as intraoperative cone-beam CT scanning with superb image quality at managed doses, 3D spine model-based planning for each pedicle, live augmented reality guidance and intraoperative verification. It enables physicians to focus on the patient and procedures while improving the surgical workflow, differentiating it from more conventional surgical navigation methods.

* A common example of a spine procedure is spinal fusion, which involves permanently attaching two or more vertebrae (the bones that form the spinal column), to achieve improved stability, correct a deformity, or reduce pain.

References


[1] Dea N, Fisher CG, Batke J, Strelzow J, Mendelsohn D, Paquette SJ, Kwon BK, Boyd MD, Dvorak MFS, Street JT. Economic evaluation comparing intraoperative cone beam C T based navigation and conventional fluoroscopy for the placement of spinal pedicle screws: a patient level data cost effectiveness anal ysis. The Spine Journal (2016) 16: 23 31.

[2] Fichtner J, Hofmann N, Rienmüller A, Buchmann N, Gempt J, Kirschke JS, Ringel F, Meyer B, Ryang Y M. Revision Rate of Misplaced Pedicle Screws of the Thoracolumbar SpineeComparison of Three Dimensional Fluoroscopy Navigation with Freehand Placement: A Systematic Analysis and Review of the Literature. World Neurosurg . (2018) 109: e24 e32.

[3] Elmi-Terander at el, Augmented reality navigation with intraoperative 3D imaging vs fluoroscopy-assisted free-hand surgery for spine fixation surgery, a matched-control study, Nature Sci. rep. 2020 Jan 20;10(1):707.

[4] Data was presented during the EUROSPINE Annual Meeting 2021 by Dr. Scarone, Neurosurgeon from the University of Southern Switzerland, Lugano, Switzerland.